斑馬魚是研究神經(jīng)系統(tǒng)發(fā)育、功能和組織修復(fù)的理想模型,尤其是特異性表達(dá)熒光蛋白的轉(zhuǎn)基因品系,幫助我們標(biāo)記目標(biāo)組織和細(xì)胞,可以清晰直觀地觀察到活體神經(jīng)細(xì)胞的動態(tài)生物學(xué)過程。
國家斑馬魚資源中心現(xiàn)有各類研究用品系1400多種,其中轉(zhuǎn)基因品系近200種。本文為大家推薦其中常用的幾種神經(jīng)系統(tǒng)標(biāo)記品系。

雙色熒光標(biāo)記的斑馬魚神經(jīng)系統(tǒng)
斑馬魚中樞神經(jīng)系統(tǒng)自前段向后依次為:嗅球(olfactory bulb)、端腦(telencephalon)、間腦(diencephalon)、下丘腦(hypothalamus)、視頂蓋(optic tectum)、小腦(cerebellum)、后腦(rhombencephalon)和延髓(medulla)等基本結(jié)構(gòu),如下圖所示。幼年期的斑馬魚大腦組織透明,且結(jié)構(gòu)簡單,可以作為優(yōu)良的神經(jīng)系統(tǒng)動物模型(Shang et al. 2015)。

斑馬魚神經(jīng)系統(tǒng) (Grandel et al. 2006)
能全面標(biāo)記中樞神經(jīng)系統(tǒng)的品系首推CZ417(ihb304Tg, Tg(gad1b:mCherry)),該品系由gad1b啟動子驅(qū)動紅色熒光蛋白mCherry的表達(dá)。gad1b是編碼生成谷氨酸脫羧酶(Glutamic Acid Decarboxylase,GAD)亞型GAD67的基因。GAD負(fù)責(zé)催化谷氨酸(glutamate)的脫羧反應(yīng),產(chǎn)生γ-氨基丁酸(Gamma Amino Butyric Acid,GABA)和CO2。GABA是起抑制性作用的神經(jīng)遞質(zhì),因此gad1b啟動子通常是作為抑制性神經(jīng)元的特異性啟動子。gad1b基因的表達(dá)譜很廣,從嗅球(olfactory bulb)、視頂蓋(optic tectum)、眼睛(eye)、延髓(medulla oblong)和脊髓(spinal cord)都可以觀察到紅色熒光蛋白的表達(dá)(Song et al., 2017)。

CZ417, ihb304Tg, Tg(gad1b:mCherry) (Song et al., 2017)
CZ413(tsu33Tg, Tg1(elavl3:YFP))和CZ160(knu3Tg, Tg(elavl3:EGFP))分別使用神經(jīng)發(fā)育標(biāo)記基因elavl3的啟動子驅(qū)動YFP和EGFP的表達(dá),在全身的神經(jīng)元中特異表達(dá)標(biāo)記基因。elavl3基因別名huc,最早在果蠅中發(fā)現(xiàn),該基因缺失會導(dǎo)致視覺神經(jīng)系統(tǒng)缺陷伴隨神經(jīng)系統(tǒng)發(fā)育不良,嚴(yán)重致死。剛過原腸期,Elavl3基因開始在分布在中線兩側(cè)的神經(jīng)元中表達(dá),神經(jīng)系統(tǒng)二次發(fā)育開始不久,Elavl3基因表達(dá)急劇上升。elavl3在斑馬魚早期神經(jīng)發(fā)育過程中發(fā)揮了重要的作用,是神經(jīng)系統(tǒng)發(fā)育的重要標(biāo)記基因(Lyons et al., 2003; Zhao et al., 2006; Wu et al., 2018)。

CZ413, tsu33Tg, Tg1(elavl3:YFP)( Wu et al., 2018)

CZ413, tsu33Tg, Tg1(elavl3:YFP)

CZ160, knu3Tg, Tg(elavl3:EGFP)
CZ154(vu19Tg, Tg(olig2:DsRed2))轉(zhuǎn)基因利用紅色熒光蛋白DsRed2標(biāo)記運動神經(jīng)元和頭部少突膠質(zhì)細(xì)胞群。在神經(jīng)系統(tǒng)發(fā)育過程中,放射狀膠質(zhì)細(xì)胞既是神經(jīng)元的前身,也充當(dāng)著新生神經(jīng)元遷移的支架。Notch信號通路在放射狀膠質(zhì)細(xì)胞的維持中發(fā)揮了重要的作用,同時抑制其形成運動神經(jīng)元,促進(jìn)其向少突膠質(zhì)細(xì)胞分化(Kim et al., 2008)。放射狀膠質(zhì)細(xì)胞在發(fā)育中的中樞神經(jīng)系統(tǒng)中居要角,扮演引導(dǎo)神經(jīng)元遷移的角色。缺少膠質(zhì)細(xì)胞的胚胎中,運動神經(jīng)元會偏離預(yù)定遷移軌跡,向脊髓外遷移,形成異常的軸突投射(Kucenas et al., 2008)。

CZ154, vu19Tg, Tg(olig2:DsRed2)
CZ224(nju1Tg, Tg(cyp26a1:EYFP))轉(zhuǎn)基因品系由cyp26a1基因一段2.5kb的啟動子驅(qū)動EYFP標(biāo)記基因的表達(dá),表達(dá)部位主要分布在視網(wǎng)膜、嗅球、背側(cè)脊髓前部、后腸、脊索后部和咽弓等組織中(Hu et al., 2008)。cyp26a1基因是細(xì)胞色素P450家族成員,相對應(yīng)的產(chǎn)物為Cyp26氧化酶,可以和視黃醛脫氫酶RALDHs(aldh1a2基因產(chǎn)物)共同協(xié)調(diào)維持視黃酸(RA)的均衡狀態(tài)。視黃酸參與了細(xì)胞增殖和凋亡、細(xì)胞分化和組織形態(tài)等多個重要的生理功能中,對機體的視覺、皮膚、免疫、生殖和神經(jīng)系統(tǒng)等都有一定的影響。

CZ224, nju1Tg, Tg(cyp26a1:EYFP)
對特異單一神經(jīng)相關(guān)組織感興趣的朋友可以關(guān)注CZ25(Tg(OTM:dGFP) ihb27Tg,標(biāo)記中腦組織),CZ31(Tg(-1.0pomca:GFP) zf44Tg,標(biāo)記腦垂體),CZ36(Tg(-2.5tshb:EGFP) ihb5Tg,標(biāo)記松果體),CZ151(Tg(ompb:tau-eGFP) jt0012Tg,標(biāo)記嗅球),CZ153(Tg(mbp:EGFP) ck1Tg,標(biāo)記成髓鞘膠質(zhì)細(xì)胞),CZ353(Tg(atoh1a:dTomato)nns8Tg,標(biāo)記小腦組織)和CZ415(Tg(crybb1:CFP) tsu24Tg,標(biāo)記晶狀體)等品系。

標(biāo)記單一特異神經(jīng)組織的品系
還有很多有意思的品系在這里就不一一贅述了,有興趣的朋友請點擊品系列表的CZ號就可以進(jìn)入品系信息頁面了解啦。未來中心的全體員工將繼續(xù)努力以為斑馬魚研究團(tuán)隊提供更好的科研支撐。
CZ ID | Genotype | construct | Note |
CZ25 | ihb27Tg/+ | Tg(OTM:GFP) | Optimal Tcf motif, TOP driving GFP expression, midbrain GFP |
CZ31 | zf44Tg/+ | Tg(-1.0pomca:GFP) | pituitary |
CZ36 | ihb5Tg/+ | Tg(UAS:casp3a-UTR-nanos3,CMV:EGFP) | pituitary/pineal/thyroid |
CZ77 | Tg(atoh7:Gal4); Tg(UAS:mcherry) | Tg(atoh7:Gal4); Tg(UAS:mcherry) | retinal ganglion cells |
CZ78 | cf2Tg/+ | Tg(elavl3:YC2) | neurons, retina |
CZ79 | ml3Tg/+ | Tg(mnx1:mGFP) | Primary motor axons, motoneurons |
CZ81 | rw0Tg/+ | Tg(isl1:GFP) | cranial motor neuron |
CZ82 | zf147Tg/+ | Tg(apoeb:LY-EGFP) | Neuronal |
CZ86 | kca66Tg/+ | Tg(h2afva:h2afva-GFP) | neuromast primordium migration, posterior lateral line nerve development |
CZ150 | ck2Tg/+ | Tg(eef1a1l1:Kaede) | Brain, hatching gland |
CZ151 | jt0012Tg/+ | Tg(ompb:tau-EGFP) | Olfactory bulb, Olfactory placode |
CZ153 | ck1Tg/+ | Tg(mbp:EGFP) | myelinating glia, central nervous system |
CZ154 | vu19Tg/+ | Tg(olig2:DsRed2) | Oligodendrocyte, motor neuron |
CZ159 | Tg(mbp:mGFP) | Tg(mbp:mGFP) | myelinating glia |
CZ160 | knu3Tg/+ | Tg(elavl3:EGFP) | neurons, nervous system |
CZ162 | Tg(ift46:GAL4-VP16;UAS:nfsB-mCherry) | Tg(ift46:GAL4-VP16;UAS:nfsB-mCherry) | eye, pronephric duct, spinal cord |
CZ224 | nju1Tg/+ | Tg(cyp26a1:EYFP) | retina,olfactory vesicle, anterior dorsal spinal cord,proctodeum,caudal notochord,pharyngeal arches |
CZ353 | nns8Tg/+ | Tg(atoh1a:dTomato) | cerebellum |
CZ354 | nl1Tg/+ | TgBAC(neurod1:EGFP) | Cranial ganglia, lateral line nerve cells |
CZ355 | um14Tg/+ | Tg(EPV.Tp1-Mmu.Hbb:EGFP) | Notch-responsive tissues such as the developing CNS, vasculature, liver, intestine and pancreas |
CZ413 | Tg(huc:YFP)/+ | Tg1(elavl3:YFP) | neurons |
CZ415 | Tg(crybb1:CFP)/+ | Tg(crybb1:CFP) | eye lens |
CZ417 | ihb304Tg/+ | Tg(gad1b:mCherry) | olfactory pit, optic tectum, medulla oblong, eye, spinal cord |
神經(jīng)系統(tǒng)特異表達(dá)的轉(zhuǎn)基因斑馬魚品系(直接點接CZ號即可進(jìn)入相應(yīng)品系信息頁面)
參考文獻(xiàn)
1.Shang C F, Mu Y, Du J L. Zebrafish swimming into neuroscience research: a visible mind in a transparent brain. SCIENTIA SINICA Vitae, 2015, 45: 223–236, doi: 10.1360/N052014-00203
2.Grandel H, Kaslin J, Ganz J, et al. Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Developmental biology, 2006, 295(1): 263-277.
3.Song, Y., Tao, B., Chen, J., Jia, S., Zhu, Z., Trudeau, V.L., Hu, W. (2017) GABAergic Neurons and Their Modulatory Effects on GnRH3 in Zebrafish. Endocrinology. 158(4):874-886
4.Obholzer N, Wolfson S, Trapani J G, et al. Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells[J]. Journal of Neuroscience, 2008, 28(9): 2110-2118.
5.Wu X, Shen W, Zhang B, et al. The genetic program of oocytes can be modified in vivo in the zebrafish ovary[J]. Journal of Molecular Cell Biology, 2018, 10(6): 479-493.
6.Zhao C, He X, Tian C, et al. Two GC-rich boxes in huC promoter play distinct roles in controlling its neuronal specific expression in zebrafish embryos[J]. Biochemical and biophysical research communications, 2006, 342(1): 214-220.
7.Kucenas S, Takada N, Park H C, et al. CNS-derived glia ensheath peripheral nerves and mediate motor root development[J]. Nature neuroscience, 2008, 11(2): 143.
8.Kim H, Shin J, Kim S, et al. Notch‐regulated oligodendrocyte specification from radial glia in the spinal cord of zebrafish embryos[J]. Developmental dynamics: an official publication of the American Association of Anatomists, 2008, 237(8): 2081-2089.
9.Lyons D A, Guy A T, Clarke J D W. Monitoring neural progenitor fate through multiple rounds of division in an intact vertebrate brain[J]. Development, 2003, 130(15): 3427-3436.
10.Hu, P., Tian, M., Bao, J., Xing, G., Gu, X., Gao, X., Linney, E., and Zhao, Q. (2008) Retinoid regulation of the zebrafish cyp26a1 promoter. Dev. Dyn. 237(12):3798-3808